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Abstract: A method of automatically generating reduced NMR data and transferring it between computers is proposed. 
These data can then be used as descriptors for input to non-parametric statistical routines for classification of the samples. 
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Introduction 

A common problem in analytical science is the 
need to categorize a sample into one of a 
number of classes based upon a series of 
measurements. These measurements could be 
a series of spectroscopic and/or chromato- 
graphic determinations and the results would 
be compared against a series of standard 
samples where the outcome was known. The 
simplest case is to pass or fail a sample from, 
for example, a clinical chemistry test by com- 
parison of a single measured marker such as 
occurs in the urinary glucose test for diabetes. 
However, the situation is often less clearly 
defined, there may not be a single descriptor, 
and more complex methods are needed. One 
approach is to generate a ‘training set’ of 
examples where the outcome is known and to 
compare, by some statistical test, the similarity 
of the test sample to various categories of 
sample in the training set. 

This type of situation is found in studies of 
‘H NMR of body fluids [l] such as urine [2] or 
bile [3], where it is possible to generate several 
hundred NMR spectra each containing many 
hundreds of resonances arising from the 
natural endogenous metabolites and often very 
many spectra are measured either from a wide 
range of patients in clinical studies or in a 
statistically valid number of animals when 
studying drug effects. In this case, one possible 
need is to categorize the spectra and hence the 

animals from which they arise on the basis of 
the observed biochemical changes which can 
be related to the toxicity of administered 
substances [l, 2, 4-61. At present, the spectra 
are quantified by measuring a series of peak 
heights or areas for specific known endogenous 
metabolites (up to about 30) and these are 
input manually, into statistics routines on a 
separate computer to that controlling the NMR 
spectrometer. We have used these data as 
input to pattern recognition software in order 
to obtain the maximum classification infor- 
mation, rather than rely on individual bio- 
chemical markers [7-91. Clearly it would be 
highly desirable to have some form of auto- 
matic data reduction of the spectra, automatic 
transfer to the statistics computer, and routines 
to convert the data into a format suitable for 
analysis by pattern recognition software. 

We describe herein a simple yet effective 
prototype approach which achieves all of these 
goals and we apply it to data sets acquired in a 
recent toxicological study and compare the 
method to manually inputting peak area data 
for selected metabolites. 

Method 

Proton NMR spectra are acquired in the 
normal fashion either with or without water 
suppression [l] using TSP (3_trimethylsilyl- 
[L&2,3,3,-‘H4] l-propionate) as an internal 
reference at a fixed concentration. Each 
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acquired spectrum is processed automatically 
using a microprogram on the spectrometer or 
associated data-station, with exponential 
weighting, Fourier transformation, phase 
correction and baseline correction. Using 
modern spectrometers, in our case a Bruker 
AM-360 running DISNMR, it is possible to use 
the NMR software to identify a peak close to 
06 and assign a chemical shift of exactly 0.0s. 
Regions of the spectra are assigned for peak 
picking with a predefined threshold fixed by 
examination of the first spectrum; we have 
chosen these regions for body fluids to be 
nominally 10.06 to 5.26 and 4.46 to -0.16, 
thereby omitting artefacts from any water 
suppression. Using the NMR computer each 
spectrum is peak-picked into a file containing 
resonance frequencies in ppm and peak heights 
in ASCII format. If all the spectra are acquired 
under the same conditions then this fully 
automatic procedure works well but if for 
historical reasons the spectra have been 
measured under different conditions it may be 
necessary to set, for example, the peak-picking 
threshold manually, this being a minor task. 
This procedure can be used on any FT spectro- 
meter from any of the major manufacturers. In 
our laboratory the ASCII files are transmitted 
over a serial line using KERMIT [lo] to a DEC 
VAX-8550 which is used for the statistical 
analysis and imported into the data handling 
software suite RS/l [II]. Using software 
written in RS/l procedure language, the TSP 
peak is identified by its chemical shift and all 
other resonances are scaled by this height. This 
routine could equally well be written in any 
high level language such as FORTRAN or C or 
even in the specialist commands as widely used 
by spreadsheet software. Because we are 
usually interested only in relative changes to 
the biochemical profiles no attempt is made to 
convert the peak heights into concentrations 
(this would require detailed assignment of the 
spectra, something the method is attempting to 
overcome, along with knowledge of urinary 
flow rates, urine collection times, number of 
protons contributing to the resonance and 
identification of coupling patterns). Each spec- 
tral file is split into integration regions, the 
width of which can be varied but is typically of 
the order of 0.025-0.1 ppm. All peak heights 
within each region are summed thus producing 
for the case of a 0.05 ppm region over a 10.06 
to 5.26 and 4.456 to -0.156 spectral range, a 
total of 188 descriptors defining that spectrum. 

Since TSP is taken to resonate at 0.06, this 
peak could lie on the boundary of two inte- 
gration regions if the regions are chosen 
injudiciously and hence the software offsets the 
regions by half of the integration width, i.e. for 
an integration region of 0.05 ppm, the process 
would begin at -0.0756, ensuring that TSP 
appears in the middle of a region. From these 
data, an RS/l table is constructed where each 
row relates to a sample with the row entries 
consisting of the 188 descriptors in decreasing 
chemical shift order. This method avoids 
simply using the observed peak intensities 
because in many cases peaks for defined 
substances may or may not be present, for 
example creatine is not normally observed in 
rat urine but is a major metabolite when the 
testicular toxin cadmium is adminstered [12]. 
The above histogram method ensures that each 
descriptor always relates to the same point in 
the spectrum. 

The RS/l data table is then used as input to 
the pattern recognition software ARTHUR 
[13] which produces, amongst other output, 
two-dimensional representations of the multi- 
dimensional data (each of the 188 descriptors 
can be thought of as a coordinate in a 188 
dimensional space). Points (i.e. individual 
spectra corresponding to single animals or 
patients) which are close together in a map 
have by definition a similarity of input vari- 
ables. We have earlier demonstrated the classi- 
fication of toxins according to site of action 
based upon NMR of urine using two such 
dimension reduction techniques, namely non- 
linear mapping [14] and principal component 
analysis [15] and details of the techniques as 
applied to bio-fluids have been published 
[i-9]. 

Results 

Figure 1 shows a representative ‘H NMR 
spectrum of urine from a control rat measured 
at 360 MHz, indicating the spectral complexity 
and the artefacts which can be introduced by 
water suppression. The data used here to test 
the data processing method arose from a 
toxicological study comprising five male and 
five female control Wistar rats and equal 
numbers of males and females dosed with a 
potentially toxic substance (B.C. Sweatman, 
C.R. Beddell, J. Wood, J.C. Lindon and G.O. 
Evans, unpublished results). Figure 2(a) shows 
a principal component map obtained by 
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Figure 1 
Proton NMR spectrum (360 MHz) of urine from a control animal. 
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Figure 2 
(a) Plot of the first two principal components for 26 NMR derived specific metabolite peak areas. (b) Plot of the first two 
principal components for 188 NMR descriptors generated automatically as defined in the text. Each point represents one 
animal, the key to the groups is as shown. 
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measuring peak areas relative to TSP for 26 
selected endogenous metabolites. The data 
were autoscaled to give each metabolite a 
mean of zero and a variance of unity, thus 
ensuring equal weighting of each metabolite. 
Each point on the map represents one animal 
and the distance between points is related to 
their similarity in terms of the descriptors used. 
The female dosed group is clearly well sep- 
arated from all the other animals as a result of 
altered biochemistry. In addition, one of the 
male control animals shows an abnormal NMR 
spectrum and appears on the map away from 
the other controls. 

Figure 2(b) shows a principal components 
map processed with autoscaling of the data as 
for Fig. 2(a) but using the automatic data 
generation method described above. A histo- 
gram region width of 0.05 ppm was used 
resulting in 188 descriptors for each spectrum. 
Using a histogram region of 0.1 ppm (94 
descriptors) gave a similar result. The simi- 
larity of the maps generated from the two 
methods is evident and both show the same 
separation of the different classes of animal, 
namely high dose females, one male control 
and the remainder of the control animals. 

A detailed investigation is being undertaken 
to optimize such parameters as FID line- 
broadening, integration region and peak-pick- 
ing threshold, but it is expected that these will 
vary according to the samples and it will be 
safer to determine a sufficient, if not optimal 
set of parameters, from the examination of the 
acquired data. Many NMR observable meta- 
bolites give rise to more than one chemically 
shifted resonance and hence there exists the 
probability that some of the descriptor values 
are intercorrelated. We have investigated this 
possibility and have within the software pack- 
age the facility to remove descriptors from 
pairs which have a predefined, high correlation 
coefficient so that we can choose to include or 
exclude highly correlated data. 

The method demonstrated here should 
enable the incorporation of data from spectro- 
meters from any manufacturer and we have 
also demonstrated its utility on cerebrospinal 
fluid NMR spectral data from a Jeol GSX500 
instrument (F.Y.K. Ghauri, J.K. Nicholson, 
C.R. Beddell, R.D. Farrant and J.C. Lindon, 
unpublished results). In addition, the method 
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could possibly allow the combination of data 
from spectrometers at different field strengths. 

Conclusions 

We have demonstrated a robust and efficient 
method of automatically reducing and transfer- 
ring NMR data for input to statistical analysis 
routines which is potentially capable of coping 
with spectra from instruments from different 
manufacturers and at different field strengths. 
We have exemplified the method with ‘H 
NMR spectra from urine for classifying 
samples according to drug toxicity, but the 
method is equally applicable to other body 
fluids, to NMR spectra of small organic mol- 
ecules to classify according to chemical struc- 
tures, to NMR spectra of macromolecules for 
comparing carbohydrate or amino-acid 
sequences or indeed to other types of spectro- 
scopy including 13C NMR or to chromatog- 
raphy for a wide variety of structural or 
analytical purposes. 
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